Yield Risk, Price Risk, and Political Risk: How Safe is Your Safety Net?

Robert J. Hauser
Bruce J. Sherrick

http://www.farmdoc.uiuc.edu/
If we’ve learned from the past, …

- 1933: AAA Agricultural Adjustment Act
- 1936: AAA Agricultural Adjustment Act
- 1948: AA Agricultural Act
- 1949: AA Agricultural Act
- 1954: AA Agricultural Act
- 1956: AA Agricultural Act
- 1958: AA Agricultural Act
- 1961: AA Agricultural Act
• 1965: FAA Food and Agriculture Act
• 1970: AA Agricultural Act
• 1973: ACPA Agriculture and Consumer Protection Act
• 1977: FAA Food and Agriculture Act
• 1981: FAA Food and Agriculture Act
• 1985: FSA Food Security Act
• 1990: FACTA Food, Agriculture, Conservation, and Trade Act
• 1996: FAIR Food and Agriculture Improvement and Reform Act
• 2002: FSRIA Farm Security and Rural Investment Act
Every program being used today has been used before, in some form or another:

- **PFC payments:**
 - 1963-1973 support payments
- **Counter Cyclical Payments:**
 - 1974-1995 deficiency payments
 - 1996-2002 MLA payments
- **Loan Program:**
 - 500 B.C. - present
What is not being used today?

- Set-aside requirements
- Annual paid land diversions
- Loan programs and CCC purchases that take large quantities off the market
- Large export subsidies
What are we trying to accomplish with the Farm Bill?

• Three popular political answers:
 – Stabilize farm income (reduce risk)
 – Raise farm income
 – Affect farm structure

• Let’s consider these criteria for Illinois corn and soybeans.
Backdrop

• 1974 crop through 2001 crop (excluding 1983) in nominal dollars for Illinois:
 – Average market revenue/acre before government payments
 • CORN = $263
 • SOYBEANS = $215
 – Accounting for non-land variable costs, average net market revenue/acre
 • CORN = $129
 • SOYBEANS = $136
• How much “risk” is associated with the average incomes per acre?
 – Corn: $41
 – Soybeans: $26
 – Corn and Soybeans: $31

• Decomposition of this risk shows that it is dominated by “price risk.”
Sources of crop revenue risk

	Corn		**Soybeans**			
	Price Effect	**Yield Effect**	**Price-Yield Correlation**	**Price Effect**	**Yield Effect**	**Price-Yield Correlation**
Farm	67.4%	32.6%	-42.5%	65.3%	34.7%	-38.0%
State	74.6%	25.5%	-51.2%	77.5%	22.5%	-40.8%

- Additional diversification effect from combining corn and soybeans reduces risk by 23.6% at the farm level, and 14% at the state level relative to the average of individual crop risks.
- How much of the risk is abated through farm programs?
Corn and Soybean Farm Revenue Components

$/Acre

- $10

$10

$40

$90

$140

$190

Year

- PFC Payments
- Div + Def + Loan + MLA
- Farm Market Rev.
Per acre effects of corn support

<table>
<thead>
<tr>
<th></th>
<th>Without support</th>
<th>With price support</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Income</td>
<td>$129</td>
<td>$152</td>
<td>$23</td>
</tr>
<tr>
<td>Risk</td>
<td>$41</td>
<td>$30</td>
<td>-$11</td>
</tr>
</tbody>
</table>
Per acre effects of soybean support

<table>
<thead>
<tr>
<th></th>
<th>Without support</th>
<th>With price support</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Income</td>
<td>$136</td>
<td>$143</td>
<td>$7</td>
</tr>
<tr>
<td>Risk</td>
<td>$26</td>
<td>$22</td>
<td>-$4</td>
</tr>
</tbody>
</table>
Two periods of large support in 2002 $

- 1986-1988:
 - $86 per corn acre

- 1999-2001:
 - $70 per acre w/o AMTA payments
 - $106 per acre with AMTA payments

- Is it fair to compare these levels of support?
 - Adjusted to an acre basis
 - Adjusted for set-aside costs
 - Adjusted for inflation
 - NOT adjusted for
 - Effects of government program on market price and production
 - Technological changes leading to different sized farm units
If a typical farm in 1970 is 400 acres, what is its equivalent in 2000?

<table>
<thead>
<tr>
<th>Soybean Acres</th>
<th>Corn Acres</th>
<th>Farm Acres</th>
<th>Growth in farm ac/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>200</td>
<td>400</td>
<td>0</td>
</tr>
<tr>
<td>500</td>
<td>500</td>
<td>1,000</td>
<td>20</td>
</tr>
<tr>
<td>750</td>
<td>750</td>
<td>1,500</td>
<td>36.66</td>
</tr>
<tr>
<td>1,000</td>
<td>1,000</td>
<td>2,000</td>
<td>53.33</td>
</tr>
<tr>
<td>1,250</td>
<td>1,250</td>
<td>2,500</td>
<td>70</td>
</tr>
<tr>
<td>1,500</td>
<td>1,500</td>
<td>3,000</td>
<td>86.66</td>
</tr>
</tbody>
</table>
Support under different growth rate assumptions

<table>
<thead>
<tr>
<th>Growth per year</th>
<th>2000 Farm total ac</th>
<th>1987 $ per corn ac</th>
<th>2000 W/O AMTA $ per corn ac</th>
<th>2000 With AMTA $ per corn ac</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>400</td>
<td>$16,000</td>
<td>$14,000</td>
<td>$21,200</td>
</tr>
<tr>
<td>20</td>
<td>1,000</td>
<td>$31,820</td>
<td>$35,000</td>
<td>$53,000</td>
</tr>
<tr>
<td>53</td>
<td>2,000</td>
<td>$55,900</td>
<td>$70,000</td>
<td>$106,000</td>
</tr>
<tr>
<td>87</td>
<td>3,000</td>
<td>$80,840</td>
<td>$105,000</td>
<td>$159,000</td>
</tr>
</tbody>
</table>

2000 Farm total ac values reflect support under different growth rate assumptions with and without AMTA.
Looking back over three decades

• In 2002 $:
 – Income support, on average, has been about $23 per corn acre with a risk reduction effect of $11.
 – The same level of risk reduction is achieved through soybean rotation.

• The “large” recent support payments are:
 – About the same level in real dollars per acre as in 1986 through 1988
 – Much larger on a “per farm” basis, depending on how the farm unit is defined
How does present program stack up?

• Depends on your view of
 – The average price for corn and soybeans through 2007?
 – PFC payments versus price responsive payments
 – Market versus political risk
Current Program

<table>
<thead>
<tr>
<th>Corn Price</th>
<th>Price Support/Acre</th>
<th>Risk Reduction/Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1.57</td>
<td>$114</td>
<td>$18.46</td>
</tr>
<tr>
<td>$1.72</td>
<td>$93</td>
<td>$18.53</td>
</tr>
<tr>
<td>$1.89</td>
<td>$72</td>
<td>$18.09</td>
</tr>
<tr>
<td>$2.07</td>
<td>$50</td>
<td>$17.47</td>
</tr>
<tr>
<td>$2.28</td>
<td>$31</td>
<td>$14.86</td>
</tr>
<tr>
<td>$2.51</td>
<td>$15</td>
<td>$10.17</td>
</tr>
<tr>
<td>$2.76</td>
<td>$5</td>
<td>$4.81</td>
</tr>
</tbody>
</table>
In summary

• With CC and LDP, a corn price of $2.40 - $2.45 provides about the same income support and risk reduction as past 30 years. Lower prices lead to more support and risk reduction
 – This does not include direct payments.
 – And does not account for farm size.

• So, under reasonable assumptions, today’s program is “successful,” relative to past programs, in reducing the income risk present in year to year changes

• But …
“Political” Risk

- Associated with the uncertainty about what the next program will be
- Depends greatly on three things:
 - Congress’s attitude toward PFC payments
 - Perceived level of “equilibrium” commodity prices (market conditions the year before …)
 - WTO negotiations
Political risk, continued …

• Given the capitalization of payments into land prices, this creates a huge risk to land owners and lenders.

• Suggest that when “penciling out” what land is worth as farm land, that you explicitly consider PFC and price-support programs separately
Effect on farm structure, or “optimal” farm size

- Programs affect cost of entry, encouraging larger farms
- Programs reduce risk, causing …?
- These program effects, however, are arguably swamped by
 - Technological effects
 - Yield diversification effects
Take home messages

• Crop revenue risk is dominated by price risk
• The ability to reduce revenue risk through current program is “high” relative to past programs
• The income support is “high” relative to past programs
Messages, continued

• No free lunch
 – The high level of risk reduction and income support creates a high level of political risk
 – This political risk is faced primarily in land valuation decisions