CONTENTS

Organization, Scale, and Performance of the Grain Trade
Richard E. Caves

Implications of Private Storage of Grains for Buffer Stock Schemes to Stabilize Prices
Anne E. Peck

Turnips, the Seventh Day Adventist Principle, and Management Bias
William O. Jones

Economies of Scale, Income Distribution, and Small-Enterprise Promotion in Ghana’s Timber Industry
John M. Page, Jr.

The Prospects for Asian Rice Production
Robert W. Herdt, Amanda Te, and Randolph Barker

Estimation of Hedging and Speculative Positions in Futures Markets: An Alternative Approach
David J. S. Rutledge

E. Louise Peffer: In Memoriam

Vol. XVI, No. 3, 1977-78
ANNE E. PECK*

IMPLICATIONS OF PRIVATE STORAGE OF GRAINS FOR BUFFER STOCK SCHEMES TO STABILIZE PRICES†

Proposals for publicly controlled or sponsored reserves of grains, to be accumulated during times of plenty and released during times of shortages, appear to provide sensible means toward reducing instability of prices and supplies. Yet recent theoretical work—for example, Turnovsky (12) and Just et al. (6)—has shown that the distribution of gains and losses among consumers, producers, and the rest of society is quite sensitive to the economic characteristics of the specific grain market. Moreover, Gustafson (4) and Helmberger and Weaver (5) have shown that the activities of the private, commercial storage sector have a marked effect upon the expected social outcomes. They argue, in fact, that if commercial storage is profit maximizing, it will also be socially optimal and additional storage would entail net losses to society.

The role and performance of private storage needs to be understood as a prerequisite to evaluation of any proposed public role. This paper summarizes the historical role of private storage of wheat in the United States. Analysis of the Commodity Credit Corporation's (CCC) wheat-storage operations provides evidence regarding their impact upon commercial storage incentives. Even though CCC operations were viewed as "surplus" operations, their impact on private storage was probably little different than they would have been if the objective had been management of reserves. Finally, the paper employs simulation analyses to contrast more clearly models incorporating private storage and those which omit it.

THE EXTENT OF COMMERCIAL DEMAND FOR WHEAT FOR STORAGE

In a series of papers, Holbrook Working established the importance of privately held stocks in the wheat market and the role that futures markers play in

*The author is Assistant Professor, Food Research Institute.
†This research was supported by a grant from the Chicago Board of Trade. The author acknowledges the cooperation of Dr. Jerry Sharples, U.S. Department of Agriculture, Economics, Statistics and Cooperatives Service.
1 The material in this section relies on the analyses in Peck and Gray (9). A more detailed discussion both of the role of commercial stocks and of the demand for wheat for storage is available there.

Food Research Institute Studies, XVI, 3, 1977-78
guiding these stocks-holding decisions (15, 17, and 18). Commercially held
stocks of wheat were found to be at least as important as exports in absorbing the
year-to-year fluctuations in domestic production over the period 1898-1932 (15).
Data from a more recent period confirms the importance of fluctuations in
privately held stocks when government controls are not the dominant price-
determining factors. The carryout from the 1973-74 crop year was 340 million
bushels, virtually all held in private hands. By the end of 1975-76, the carryout
nearly doubled to 664 million bushels, most of which was also privately held.
The following year, the carryout climbed to 1,105 million bushels, although a
portion of this was held under government loan and reseal programs announced in
the spring of 1977. Carryout stocks change dramatically with changes in market
conditions and these changes are comparable in magnitudes with the changes in
annual domestic use and annual export use.

Given both the size and the extent of fluctuations in commercially held wheat
stocks, models of the wheat market which exclude this demand component
seriously misrepresent the operation and implications of the “free” market. The
central question is how to include a commercial demand for storable wheat into
such formulations. Previous models have assumed either that year-end stocks do
not vary or that stocks are held in response to the current price relative to some
notion of an expected price. The former assumption is equivalent to ignoring
commercial stocks. The latter approach raises the difficulty of quantifying an
expected price, made greater here because an expectation for next year is clearly
dependent upon what happens this year as well as on expectations for all the
endogeneous variables over an infinite time horizon.

The most common resolution of this problem has been to employ some variant of
the rational expectations hypothesis. For example, Meinken used an indications
variable, fall plantings of winter wheat for harvest the following year, as a
proxy for market expectations of price (7). Vannerson employed a similar sub-
stitution in his annual models (14). To facilitate estimation, these relationships
have been viewed typically as linear. But, as Helmburger and Weaver have shown
in their recent theoretic analysis, even the rational expectations hypothesis leads
to a strongly nonlinear demand for grain for storage (5).

However innovative, these approaches ignore the institutional setting in
which the decision to store grain between crop years is made. Specifically,
attention has not been focused on the role that futures market perform in
providing market-determined prices of storage to guide inventory decisions.
These markets also provide a mechanism whereby the returns to storage can be
predicted reasonably accurately when the storage decision is made.

Empirical analysis of this role led Working to posit his theory of the price of
storage, which relates the difference in prices for futures contracts of differing
maturities to stocks of the commodity to be stored. The relationship he found,
now commonly called a supply of storage curve, is strongly kinked. At low levels
of stocks, a positively sloped portion of the curve reveals that stocks are quite
sensitive to the price of storage. As stocks increase, however, the market-
determined price of storage approximates the total cost of storage, and the
relationship becomes flat. Further increases in the size of this supply of storage
are not reflected in a corresponding increase in the price of storage. To produce
commodity in competition with the world market, commodity firms demand extra
storage. To produce in competition with commercial firms, storage demand
is also strongly kinked.

Chart 1, reproduced in Figure 1, shows the expected behavior of the commodity to put in
storage at each market price. Although the relationship is linear, the kink is
obvious. From the high demand curve of the free market, the kinked relationship
in Chart 1 suggests that the price of storage will be $100 above the $100 level
of fixed demand at the kink. Further storage is supplied by the second market
below the kink. At this price, the quantity stored will be 50 bushels. The
traditional supply curve shows the quantity supplied by the second market
should be estimated from the kinked relationship in Chart 1. The supply curve
is a measure of the relationship between price and quantity supplied. Chart 1
shows the relationship between price and quantity supplied.

This relationship is used to estimate the supply curve (5). The data were
available for the season 1953-54. The data show that the relationship holds
well for the entire period. The relationship is used to estimate the supply curve
in the model of the wheat market.

The relationship is used to estimate the supply curve (5). The data were
available for the season 1953-54. The data show that the relationship holds
well for the entire period. The relationship is used to estimate the supply curve
in the model of the wheat market.

The relationship is used to estimate the supply curve (5). The data were
available for the season 1953-54. The data show that the relationship holds
well for the entire period. The relationship is used to estimate the supply curve
in the model of the wheat market.

A second source

The analysis above begins with the determination of the price of storage at
old July 1 to June 30 period.

The analysis above begins with the determination of the price of storage at
old July 1 to June 30 period.
relationship becomes nearly horizontal. Over a wide range of stock levels, no further increases in the price of storage are required to induce increases in the amount of the commodity that is stored. Recently, Peck and Gray argued that this supply of storage relationship also describes a demand by the commercial trade for the commodity to be put into storage (9). In supplying storage space, commercial firms demand specific commodities at various times to put into storage. To produce an output of stored commodity, firms must demand the commodity in competition with other users to put into storage. Thus, Working's evidence would suggest that the demand for a commodity to put into storage is also strongly kinked.

Chart 1, reproduced from (9), is one attempt to translate this demand for a commodity to put into storage into the context of an annual commodity model with specific reference to the wheat market. As with the supply of storage curve, it is strongly nonlinear. This curve, however, has no strictly horizontal component; there is no maximal, cost-of-storage difference between the current year's annual price and the notion of normal price, the mean, which is used here. This "price of storage" is not one that can be earned in the market. Further, the relationship in Chart 1 reflects the complex interaction of consumption demand (export and domestic) and storage demand. In a complete model, these demand curves should be estimated simultaneously. The point here, however, is simply to establish a reasonable shape for the storage function. The horizontal component of the traditional supply of storage curve reflects the fact that traders are willing to store any amount of grain at full carrying charges. Viewed as either horizontal or gradually decreasing, this component of the storage curve implies that total demand becomes much more responsive at low prices than at higher prices. That is, total demand is indeed segmented, the kink a result of private stocks-holding.

SHIFTS IN THE DEMAND FOR STORAGE

A demand for storage curve similar to that shown in Chart 1 was used in the market simulation to be discussed below. The relationship shown in Chart 1, however, relied on somewhat dated historical evidence which raises two concerns. The first is whether there has been a shift in the curve over time due to industry growth. The carryout of wheat from the 1975-76 crop year totaled 247.4 million bushels, virtually all in private hands. The difference between the July and the July futures contracts (the price of storage) on April 15, 1974 was -23 cents. The following year's carryout was 326 million bushels with a price of storage of -8 cents. These observations would not fit the 1892-1933 relationships developed by Working or the curve shown in Chart 1. They reflect the changes in milling and export capacity which have increased the level of desired, working stocks. To account for this difference, the demand for storage used in the simulations was shifted to the right of the curve shown in Chart 1. The exact specification of the storage demand used in the simulation model is shown in Chart 2 and will be discussed below.

A second source of concern relates to the possible effects of government...
The price data are from U.S. Department of Agriculture, Agricultural Statistics, Washington, D.C., 1941 and the stocks data are from Hollbrook Working, "Price Relations between July and September Wheat Futures at Chicago Since 1885," Wheat Studies, 9, 6, March 1933, Appendix Table VI. The prices are deflated by the WPI (1926 = 100). The observations for 1916/17-1920/21 are omitted due to shifts in demand created by World War I. The circled observations were deleted from the statistical analysis; they are the years 1930-32 when substantial amounts of total carryout stocks were held by the Federal Farm Board. The relationship shown above, estimated using a constrained linear estimation technique is

\[Y = 1.93 - 0.0061X + 0.0060 \ln (X-139.7)D \quad R^2 = 0.6454 \]

where \(Y \) is the deflated price, \(X \) is carryout, and \(D \) is a binary variable which equals 1 if the carryout is greater than 139.7 (the kink-point) and equals zero elsewhere.
Chart 2.—Shifts in the Supply of Storage Relationship Caused by Changes in Government Stocks Levels, 1950-74*

where Y is the deflated price X in carryout, and D is a binary variable which equals 1 if the carryout is greater than 1.507 (the line of zero and equals zero).

stocks-holding on the private demand for storage. It seems unlikely that commercial stocks-holders, given otherwise equal incentives, would be willing to carry equal stocks, if in one case the government was holding large stocks while in the other it was not. This argument is most clearly seen in the context of the traditional supply of storage curves. They have been developed as the sum of three marginal cost elements: the physical cost of storage, interest cost on the grain in store, and the marginal convenience attributed to those stocks. The latter factor dominates the storage curve at low levels of stocks and creates the positively sloping portion of the curve. As available supplies become small, the marginal value of owning some of that total supply increases because of the flexibility it provides to the firm in its continuous merchandising and processing decisions. Thus, the storage curve may shift with changes in government-held stocks because these influence the convenience yield of stocks held by private firms. The more abundant are supplies in an accessible position, even if held by the government, the lower will be the value an individual producer or merchant will place on having stocks in his own elevators. Hence government-held stocks may substitute for stocks which would have been held by commercial firms. Analogously, the demand for wheat for storage may shift with changes in government stocks levels.

For purposes of the eventual simulation, the preferred analysis would have been to look at the demand for storage curve, as in Chart 1, and to examine its shifts with government-stocks levels during the 1950-74 period. However, the loan and price support program underwent several substantial changes during this period, changes which probably affected the prevailing view of "normal" price. Furthermore, the obvious simultaneities among price, use, private stocks, and government stocks suggested that the analysis at least ought to begin with more familiar notions of storage response. Therefore data were collected to analyze the more traditional supply of storage curve over this period. These results were then extrapolated to the relationship describing the demand for wheat to put into storage.

In Chart 2 privately held, year-end stocks were plotted against the price of storage, here the difference between the July and the May futures on April 15. The price of storage was positive on only three occasions over the period 1950-74. Further, it appears unlikely that any of these prices represented full carrying costs. Hence, only the positively sloped portion of the supply of storage curve is of importance. Equivalently, these data relate only to the negatively sloped portion of the demand curve in Chart 1. On the further assumption that this portion of the supply of storage curve is approximately linear, it can be estimated with usual regression techniques. The dependent variable was taken to be the level of privately held stocks in the least squares estimation, the fitted curve among the errors. The results are:

\[STOX = \text{STOX}_0 + \beta_0 P \]

where STOX is the level of storage (July minus May) and \(P \) is the government-control subsidized market price. The estimated standard error of the coefficient is indicated by the dash in Chart 2, where the supply of storage on the vertical axis is the level of government-held stocks. The private firms, it is felt, do not follow, these results indicating the behavior of the demand for storage.

The first contract call for new crop wheat in 1950 was for 258.5 million bushels, or 19.2% of the year's wheat market contract. In the preceding two years the contract was 16.2% and 11.2% of the market, respectively. A random date of call for the 1950 contract determined the supply function. The function is found to depend on one selected, the target price.

4 See Brennan (1950) for a more complete description of the elements important in the storage relationship. An additional factor often included in these discussions is the risk premium. Empirical evidence is divided on this question, although the evidence does not suggest that it exists in the simple ways it has been described.

5 Warehouses were paid 15 cents per bushel per year, or roughly 15 1/2 cents per bushel per month to store grain under the provisions of the "loan" program. Thus full carrying charges between the May and the July future would be 5 cents a bushel. Only the April 1953 spread, which was 3 cents, represented full carrying charges and perhaps should be deleted in the econometric analysis.
storage. It seems unlikely that concomitant equal incentives, would be willing to store wheat lasting large stocks while the most clearly seen in the context of the storage have been developed as the sum of three of the storage, interest cost on the grain in allocated to those stocks. The latter factor, however, the stocks and creates the positively supplies become small, the marginal increases because of the flexibility it provides in handling and processing decisions. Changes in government-held stocks and of stocks held by private firms. The price position, even if held by the individual producer or merchant will Hence government-held stocks may be held by commercial firms. An analogous shift with changes in government

The preferred analysis would have been Chart 1, and to examine its shifts the 1950-74 period. However, the loan and substantial changes during this period. The prevailing view of "normal" price, during price, use, private stocks, and files at least ought to begin with more data were collected to analyze the this period. These results were then plotted against the price of the May futures on April 15. Occasions over the period 1950-74, prices represented full carrying cost of the supply of storage curve is only to the negatively sloped the further assumption that this is not linear, it can be estimated that variable was taken to be the

The elements important in the storage discussions is the risk premium. Evidence does not suggest that it exists or roughly 175 cents per bushel per program. Thus full carrying charges were

Only the April 1953 spread, which should be deleted in the econometric

\[
\begin{align*}
 \text{STOX} &= 257.0 + 2.51 \, P - 0.12 \, \text{CCCSTOX} \\
 (34.7) & (0.46) (0.03) \\
 R^2 &= 0.8653 \quad \text{D.W.} = 1.99
\end{align*}
\]

where STOX is the level of privately held, year-end stocks of wheat, P is the price of storage (July minus May futures on April 15), and CCCSTOX is the level of government-controlled stocks at year's end. The figures in parentheses are the estimated standard errors of the coefficients. These results indicate clearly the influence of CCC stocks on the trade's willingness to carry year-end stocks. The dashed lines in Chart 2, drift lines obtained from the regression results, show the supply of storage relationship for varying levels of government stocks. The larger the level of government stocks, the smaller will be the level of stocks carried by the private firms, given equal price incentives. In the simulation analyses which follow, these results for the supply of storage curve are incorporated into the behavior of the demand relationship for private storage of wheat.

SIMULATIONS OF THE WHEAT MARKET

To permit a comparative analysis, two models of a wheat market are simulated. The first contains no private storage demand. Private stocks are fixed at 300 million bushels, though the specific level is immaterial. The second model of the wheat market contains a demand for storage curve based on the analyses in the preceding two sections. All other relationships in the market models are identical. Included on the demand side are an export-demand equation and a domestic-demand equation with price elasticities approximating -1.0 and -0.2, respectively. A random shifter is assumed to operate on the export-demand curve. Production is the product of acres harvested, determined from a cobweb-type supply function, and a normally distributed random function. Then, with production determined and the value of the random shifter on the export equation selected, the three demand equations are solved simultaneously to provide a price.

A more complete description of the basic simulation model used here is available in Sharpe, Walker, and Slaghers (12). The specific model made available for this research had undergone substantial changes from the model described there. Most of the changes were eliminated in this analysis to facilitate the comparison. They dealt with acreage set-aside, deficiency payments, and target prices.
The demand curve for wheat for storage in the simulation model is formulated as

\[
\text{STOX} = P \begin{cases} 3,400 - 1,000 P - 0.1 \text{ CCCSTOX} : & 0 < P \leq 2.90 \\ 814 - 108 P - 0.1 \text{ CCCSTOX} : & 2.90 < P \leq P^* \end{cases}
\]

where STOX and CCCSTOX are as before, and P is now the annual average price. Additionally, private stock levels are not permitted to decrease below 250 million bushels if there are no government stocks, or below 50 million bushels if there are government stocks. That is, the curve becomes vertical at some \(P^* \), where \(P^* \) varies with the level of government stocks. The basic curve is shown in Chart 3 along with two shifts occasioned by increasing levels of government stocks.

For example, if \(P = 3.40 \), the price of the December wheat contract is effectively frozen at the equilibrium price of \(P^* \), which is determined by the supply and demand in the market. However, if the government decides to intervene and increase the supply of wheat, the curve shifts upward, reflecting the increased availability of wheat in the market. This shift is depicted in Chart 3 as the dotted line. Finally, if the government decides to decrease the supply of wheat, the curve shifts downward, reflecting the reduced availability of wheat in the market. This shift is depicted in Chart 3 as the dashed line. At some point, if the government continues to increase the supply of wheat, the demand curve may shift to such an extent that the price of wheat decreases to the point where \(P = 2.90 \), at which point the government stops intervening, and the market price returns to its equilibrium level.
The curve was positioned so that pipeline stocks (stocks carried in the absence of any price incentive) are between 400 and 500 million bushels. The main kink in the curve was put at $2.90, roughly the full cost of storage ($0.40) below the equilibrium price of $3.50. With no government stocks, private stocks cannot drop below 250 million bushels and the curve becomes vertical at $5.22. An example of the demand for storage shifted by government stocks is shown by the dotted line. Finally, the maximum shift in the storage curve is shown with a dashed line. At some level of government stocks (a level determined by the rate of shift of the curve), the demand for storage by private traders will shift no further. Private stocks will never be negative and, at prices below $2.90, the incentive to store remains. The latter implies that the long-run average price remains unchanged with a government program in effect.

There is one important difference in this formulation of the demand for storage relative to the historical analyses above. The analysis of the traditional supply of storage curve over the 1950-74 period revealed that there were no years in which the price of storage, the difference between the futures prices for the old and new crop contracts, equalled the full, physical costs of storage. This formulation of the demand for storage for the simulation model clearly permits the equivalent of full carrying charges to occur. At prices of $2.90 and below, the private demand for storage is once again completely responsive to storage incentives, regardless of the level of government stocks. The model and the historical evidence are not completely reconciled, which is perhaps due to the simplified, partial nature of the preceding analyses. For example, the possible effect of using loans rather than direct purchase has not been explored. A loan program is not equivalent in its market effects to a government-stocks agency buying and selling at predetermined prices. Another likely cause of this difference is that loan prices were never set at more than the full cost of storing wheat below the equilibrium price. Whichever is the more important cause, this difference between the model and the evidence should be held in mind as the simulation results are presented.

Comparative characteristics of the two specifications of the wheat market, with and without a storage demand curve, are summarized by the results in Table 1 and Chart 4. In Table 1, the annual averages and standard deviations of several important variables are presented. These results are based on identical runs of 500 seven-year sequences. In terms of levels of production, exports, and domestic use, the two models performed similarly. The most striking differences between the two models are in the carryout level and the price level. The first difference was foreordained. In the first model the behavior of the other variables would not change if pipeline stocks were set at any other level. Their constancy from year to year implies that they have no effect upon prices or upon any of the uses. The second difference, that between the average prices, will be explored further. It is worth noting that the intersection of the supply and the total demand curve in each model is the same. Hence, the reported differences in means derives from the distribution of prices in each model and hence from the nonlinearities in the respective total demand curves.

For example, Gray has shown that the operation of the loan program induced a bias in the price of the December wheat future (5). While this bias does not affect the analysis here directly, it is suggestive of the kinds of effects potentially created by the specific operation of a loan program.
<table>
<thead>
<tr>
<th></th>
<th>Market without private storage</th>
<th>Market with private storage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Annual average</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>Price stabilized within $1.00 of the long-run average price</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>2,152</td>
<td>376</td>
</tr>
<tr>
<td>Price (cents/bushel)</td>
<td>346</td>
<td>135</td>
</tr>
<tr>
<td>Private stocks</td>
<td>300</td>
<td>0</td>
</tr>
<tr>
<td>Buffer stocks</td>
<td>197</td>
<td>305</td>
</tr>
<tr>
<td>Government cost (million dollars)</td>
<td>121</td>
<td>546</td>
</tr>
<tr>
<td>Price stabilized within $.50 of the long-run average price</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>2,133</td>
<td>274</td>
</tr>
<tr>
<td>Price (cents/bushel)</td>
<td>337</td>
<td>91</td>
</tr>
<tr>
<td>Private stocks</td>
<td>300</td>
<td>0</td>
</tr>
<tr>
<td>Buffer stocks</td>
<td>436</td>
<td>361</td>
</tr>
<tr>
<td>Government cost (million dollars)</td>
<td>250</td>
<td>871</td>
</tr>
<tr>
<td>Price stabilized within $.25 of the long-run average price</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>2,129</td>
<td>240</td>
</tr>
<tr>
<td>Price (cents/bushel)</td>
<td>336</td>
<td>76</td>
</tr>
<tr>
<td>Private stocks</td>
<td>300</td>
<td>0</td>
</tr>
<tr>
<td>Buffer stocks</td>
<td>495</td>
<td>365</td>
</tr>
<tr>
<td>Government cost (million dollars)</td>
<td>304</td>
<td>1,011</td>
</tr>
</tbody>
</table>

*Simulation results.

Above and below the ceiling and the floor prices are possible. Also, the private demand for storage is presumed to shift to the left as government stocks increase as described above and illustrated in Chart 3.

Table 2 summarizes the effects of the three simulated buffer stock schemes on key market variables under the two different specifications of the wheat market. In the market without private storage, stabilization is costly and difficult to achieve. For example, trying to maintain prices within $.25 of the equilibrium price resulted in annual average expenditures of $304 million and still left the

Table 3—

<table>
<thead>
<tr>
<th>Activity</th>
<th>Results under specified scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price stabilized within .25 of long-run average price</td>
<td></td>
</tr>
<tr>
<td>Purchased</td>
<td>Sold</td>
</tr>
<tr>
<td>Price below</td>
<td>Price above</td>
</tr>
<tr>
<td>Price stabilized within .50 of long-run average price</td>
<td></td>
</tr>
<tr>
<td>Purchased</td>
<td>Sold</td>
</tr>
<tr>
<td>Price below</td>
<td>Price above</td>
</tr>
<tr>
<td>Price stabilized within $1.00 of long-run average price</td>
<td></td>
</tr>
<tr>
<td>Purchased</td>
<td>Sold</td>
</tr>
<tr>
<td>Price below</td>
<td>Price above</td>
</tr>
</tbody>
</table>

Simulation results.
Table 3.—Frequency of Buffer Stock Agency Activities* (percent)

<table>
<thead>
<tr>
<th>Activity or results under specified scheme</th>
<th>Market without private storage</th>
<th>Market with private storage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zero initial stock</td>
<td>300 million bu.</td>
</tr>
<tr>
<td></td>
<td>initial stock</td>
<td>initial stock</td>
</tr>
<tr>
<td>Price stabilized within $1.00 of long-run average price</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purchased</td>
<td>16.4</td>
<td>14.3</td>
</tr>
<tr>
<td>Sold</td>
<td>9.1</td>
<td>18.1</td>
</tr>
<tr>
<td>Price below lower bound</td>
<td>2.2</td>
<td>0.9</td>
</tr>
<tr>
<td>Price above upper bound</td>
<td>13.7</td>
<td>7.2</td>
</tr>
<tr>
<td>Price stabilized within $.50 of long-run average price</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purchased</td>
<td>35.8</td>
<td>35.9</td>
</tr>
<tr>
<td>Sold</td>
<td>23.6</td>
<td>29.3</td>
</tr>
<tr>
<td>Price below lower bound</td>
<td>9.1</td>
<td>7.7</td>
</tr>
<tr>
<td>Price above upper bound</td>
<td>13.6</td>
<td>8.4</td>
</tr>
<tr>
<td>Price stabilized within $.25 of long-run average price</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purchased</td>
<td>41.4</td>
<td>42.0</td>
</tr>
<tr>
<td>Sold</td>
<td>30.1</td>
<td>36.0</td>
</tr>
<tr>
<td>Price below lower bound</td>
<td>13.9</td>
<td>12.5</td>
</tr>
<tr>
<td>Price above upper bound</td>
<td>15.9</td>
<td>11.1</td>
</tr>
</tbody>
</table>

*Simulation results. Figures are percentages, indicating how frequently a specific action (e.g., purchase or sale of stock) or event (price remaining above upper bound price or below lower bound price) occurred. For example, in stabilizing price within $1.00 of the long-run average price, the government was required to purchase wheat 16.4 percent of the time or (roughly one out of every six years) in the absence of a private demand for stocks.

standard deviation of price at $.76. The buffer stock was unable to stabilize prices effectively in part because it had no initial operating stocks. Another simulation was therefore performed which gave the stocks agency initial operating stocks of 300 million bushels. This assumption did reduce substantially the number of times the agency was unable to act because of insufficient stocks as is shown in Table 3. There was no major change, however, in the relative values shown in Table 2.

Perhaps the most interesting feature of these results is the comparative inexpensiveness of each of the proposed schemes when a private demand for stocks has been included, even though the demand for stocks is assumed to shift to the left as government stocks accumulate. The cost of the scheme to stabilize prices between $2.30 and $4.30 would average $121.2 million with no private stocks, but only
$6.0 million with private stocks. The extent of this difference varies with the scheme and the initial buffer stocks assumption, but the difference is always in the same direction.

Costs are not the only concern, of course. It is also important to know how well the scheme performs its primary task of reducing price variability. This too is affected by private demand for stocks. Consider first the situation where no initial stocks are permitted. The most stringent of the price bounds reduced the standard deviation of prices from $1.71 (Table 1) to $0.76, or 56 percent when there were no private stocks. The cost of this reduction averaged $304 million annually. In the model with a private demand for stocks, the reduction in the standard deviation of price was from $0.85 (Table 1) to $0.61, or 28 percent, at an annual average cost of $287 million. When initial government stocks were permitted, the price variation reductions were 66.1 percent and 44.7 percent, respectively, and the costs averaged $286 million and $281 million.

Thus, roughly equivalent expenditure levels ($304 million and $287 million) resulted in markedly different relative reductions in price variability. In the absence of a private demand for storage, price stabilization through buffer stock dealings appears to be reasonably easy to accomplish. However, the most stringent of the proposed price bounds reduces price variation only to a level equal to that found in the “free” market when private storage is permitted. Significant reductions beyond this level were shown to be difficult to obtain. Thus, when the storage sector is included in a market model, much of the intuitive appeal of buffer schemes is eliminated.

The results of the private stocks models raise the fundamental question of how much stability is desired. In the absence of a private demand for storage, expenditures of $250 million to $304 million were required to constrain the variability of prices to a range of $0.91 to $0.76. The variability of prices resulting from the model with a private demand for storage and no government stocks activity ($0.85) is roughly the midpoint of this range. The commercial trade, in its response to storage incentives, thus provides a minimum of $250 million worth of price stability to the market. Is more stability desirable given its increasing costs?

SUMMARY AND CONCLUSION

This paper has sought to examine the implications of private storage of grains for the operation of buffer stock schemes designed to moderate commodity price fluctuations. Simulation techniques were used to compare the behavior of relevant market variables from two models of the wheat market that included and excluded private storage demand. The precise specifications of the models are similar to the kinds of models which are widely used in the examination of buffer stock proposals, except that in the second model the demand by private firms for grain for year-end storage was added to the demands (domestic and export) included in the original specification.

The comparisons here rely solely upon differing assumptions about the nature of private storage of grains. The usual assumption, that private stocks are constant, was compared to one where these stocks are price responsive. The form of the latter relied on historical data. A more complete comparison would entail

November 1977.
of this difference varies with the

also important to know how well

This too is

Thus the situation where no initial

the price bounds reduced the

$0.76, or 56 percent when

reduction averaged $304 million

For stocks, the reduction in the

the range 1) to $0.61, or 28 percent,

initial government stocks were

66.1 percent and 44.7 percent,

$304 million and $287 million)

fluctuations in price variability. In the

stabilization through buffer stock

establish. However, the most stringent

variation only to a level equal to

storage is permitted. Significant

difficult to obtain. Thus, when the

much of the intuitive appeal of

The fundamental question of how

private demand for storage,

were required to constrain the

$0.76. The variability of prices

for storage and no government

of this range. The commercial

provides a minimum of $250

more stability desirable given its

cclusion

tions of private storage of grains

lead to moderate commodity price

is to compare the behavior of rele-

vant market that excluded and

specifications of the models are

included in the examination of buffer

the demand by private firms for

(domestic and export)

For assumptions about the nature

that private stocks are

are price responsive. The form

complete comparison would entail

simulation of two models which had been estimated separately from the same set

of historical data. It is unlikely, for example, that the two specifications would

result in identical estimates of the elasticities of export and domestic demand.

However, that approach, while more nearly complete, would obscure the desired

contrast. Differences in the behavior of market variables would be attributable to

differing elasticities as well as to differing storage assumptions. Here, differences

are clearly the result only of the different storage assumptions.

The comparative simulations showed that private firms contribute on the order of

$250 million of price stabilization through their profit-motivated, year-end

storage decisions. Thus, these results confirm the importance of the commercial

firms in providing price stability to the grain markets. This importance was

originally recognized in the context of futures markets and in the analyses of the

economic effect of futures trading. In fact, the form of the demand curve for wheat

storage was derived directly from relationships developed in futures market

analyses.

The market simulations also demonstrated that the appeal of buffer stock

schemes was largely illusory when private firms' behavior was included as a

market factor. The remaining price fluctuations were shown to be increasingly

difficult to reduce. In part, this was due to shifts in the demand for storage curve

induced by government storage. Primarily, however, the increasing difficulty

appeared to be the result of the relatively narrow range of price variations which

remained after private firms had made their storage decisions. Rather large buffer

stock expenditures (average annual cost of $287 million) were shown to reduce

price variability by only 27 percent with a significant (17.5 percent) failure rate in

preventing high prices.

Once private storage has been accounted for, active buffer stock schemes lose

much of their appeal. The remaining variation, as described by the distribution of

prices shown in the paper, more nearly supports the grain reserves/stocks fund

approaches to stabilization which are designed as insurance schemes, not stabiliza-

tion schemes. Further analyses of the wheat market as well as other grain

markets are required to establish the requisite size of an insurance reserve. The

analyses in this paper show that when most needed, the buffer stock schemes do

not have the stocks to act.

Citations

1 Michael J. Brennan, "The Supply of Storage," American Economic Review,

March 1958.

2 Willard Cochrane and Vigal Danin, "Reserve Stock Grain Models, the

305, Minneapolis, 1976.

3 Roger W. Gray, "The Seasonal Pattern of Wheat Futures Prices Under the

Loan Program," Food Research Institute Studies, 3, 1, February 1962.

4 Robert L. Gustafson, Carryover Levels for Grains, U.S. Department of

5 Peter Helmerger and Robert Weaver, "Welfare Implications of Commodity

Storage Under Uncertainty," American Journal of Agricultural Economics, 59, 4,

November 1977.

17 ———, “Price Relations Between July and September Wheat Futures at Chicago Since 1885,” *Wheat Studies*, 9, 6, March 1933.